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The transmission properties of a one-dimensional photonic crystal containing two kinds of single-negative
(permittivity- or permeability-negative) media are studied theoretically. We show that this structure can possess
a type of photonic gap with zero effective phasesfeffd. The zero-feff gap distinguishes itself from a Bragg gap
in that it is invariant with a change of scale length and is insensitive to thickness fluctuation. In contrast to a
photonic gap corresponding to zero averaged refractive index, the zero-feff gap can be made very wide by
varying the ratio of the thicknesses of two media. An equivalent transmission-line model is utilized to explain
the properties. A photonic quantum-well structure based on zero-feff gaps is proposed as a multiple channeled
filter that is compact and robust against disorder.
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I. INTRODUCTION

Photonic crystals(PCs) have found many applications due
to their unique electromagnetic properties[1]. Conventional
photonic band gap(PBG) originates from the interference of
Bragg scattering in a periodical dielectric structure. Since the
middle frequency of the Bragg gap is inversely proportional
to the lattice constant, the size of device based on the PBG is
dependent on the working wavelength. For example, a mi-
crowave device based on the PBG is usually large. On the
other hand, the properties of photonic materials are affected
by disorder and/or fabricational tolerances. Sometimes ran-
domness may deteriorate the PBG. In order to make devices
compact and robust against disorder, some type of PBG com-
ing from mechanisms beyond the Bragg scattering needs to
be found.

One such attempt is to realize PBG in metamaterials. The
metamaterials that exhibit simultaneously negative permittiv-
ity s«d and permeabilitysmd in a frequency band are called
double-negative(DNG) materials or left-handed(LH) mate-
rials [2–13]. It is demonstrated that stacking alternating lay-
ers of double-positive and DNG media leads to a type of
PBG corresponding to zero(volume) averaged refractive in-
dex[9]. Such zero-n̄ gap differs fundamentally from a Bragg
gap in that it is invariant with scaling and insensitive to
disorder. A number of unique transmission properties of the
zero-n̄ gap have been studied[10,11].

Besides DNG materials, the materials in which only one
of the material parameters has negative value have attracted
people’s interest[14,15]. These single-negative(SNG) mate-
rials include the epsilon-negative(ENG) media with negative
permittivity but positive permeability and the mu-negative
(MNG) media with negative permeability but positive per-
mittivity. Metamaterials with effective negative permittivity
in a frequency band have been fabricated by using wire ele-

ments[16]. Metamaterials with effective negative permeabil-
ity in a particular frequency range have also been obtained
by utilizing split ring resonators[17]. However, people have
to combine both the methods of fabricating ENG media and
MNG media to form metamaterials with simultaneously
negative permittivity and permeability[3,6]. Therefore, in
point view of techniques, fabrication of SNG materials may
be less intricate than that of DNG materials. Moreover, ef-
fective LH media can be formed by having layers of SNG
media since the effective group velocity and phase velocity
in such structure would be antiparallel[14]. A number of
unique properties such as resonance, complete tunneling and
transparency have been found in MNG-ENG bilayer struc-
ture [15].

In this paper, we find that MNG-ENG multilayer structure
can possess a type of photonic gap that is distinct from a
Bragg gap. When the wave impedance andeffectivephase
shift in MNG layer are equal to those in ENG layer at some
frequency(zero effective phase delay point), the wave can
tunnel through the structure without any phase delay. Once
the effective phase shift(at wave impedance matching fre-
quency) in the MNG layer mismatches that in ENG layer,
however, a gap will open at the zero effective phase(zero-
feff) delay point, and we call this gap the zero-feff gap. In
comparison with a Bragg gap, the zero-feff gap has unique
properties. Conventional Bragg gap varies with respect to a
scale-length change and would be deteriorated by random-
ness. However, the zero-feff gap is invariant with a change
of scale length and insensitive to disorder as long as the ratio
of the average thicknesses of two media maintains, as we
will show in Sec. II. An equivalent transmission-line(TL)
model is used to explain the properties of the zero-feff gap
and the connection and correspondence between the zero-feff
gap and the zero-n̄ gap are analyzed in Sec. III. In Sec. IV, a
photonic quantum-well(QW) structure based on zero-feff
gaps is proposed, and its properties and application as a mul-
tiple channeled filter are discussed. Finally, we conclude in
Sec. V.*Corresponding author: Email: honchenk@online.sh.cn

PHYSICAL REVIEW E 69, 066607(2004)

1539-3755/2004/69(6)/066607(5)/$22.50 ©2004 The American Physical Society69 066607-1



II. INFINITE- AND FINITE-PERIODIC STRUCTURE
WITH SNG MATERIALS

We suppose that

«1 = «a, m1 = ma −
a

v2 s1d

in MNG materials and

«2 = «b −
b

v2, m2 = mb, s2d

in ENG materials. It is noted these kinds of dispersion form1
and «2 may be realized in special microstrips[18]. In Eqs.
(1) and (2), v is the frequency measured in GHz. We con-
sider the situation thatm1 and«2 are negative. In the follow-
ing calculation, we choosema=«b=1, «a=mb=3, a=b
=100. The thicknesses of MNG and ENG slabs are assumed
to bed1 andd2, respectively.

First we consider an infinite-periodic structure. The dis-
persion relation can be obtained by using the Bloch-Floquet
theorem[14]:

cosbsd1 + d2d = coshk1d1 coshk2d2

−
1

2
Sh1

h2
+

h2

h1
Dsinh k1d1 sinh k2d2, s3d

where bsd1+d2d is the Bloch phase(Bloch wave vectorb
times the lattice constant), the wave impedances and effec-
tive phase shifts in MNG and ENG layers arehi =Îumi /«iu,
ki di =kÎu«imiudi si =1,2d, respectively;k is the wave number
in vacuum. Although in each layer fields are evanescent
waves since the wave vectors are complex, propagation
modes in the periodic structure still exist. The appearance of
propagation modes can be explained with the aid of a tight-
binding model in solid-state physics. When SNG layers con-
struct a periodic structure, the localized interface modes(we
will explain this unusual field behavior in detail later) in each
period will interact and thus split. That is to say, the interface
modes will couple each other and form propagation modes.
Here in order to discuss the problem conveniently, we intro-
duce the phase-match condition that is written as

k1d1 = k2d2. s4d

The variance of band gap with different ratio of two kinds
of single-negative media is shown in Fig. 1. The solid line in
Fig. 1(a) corresponds to the phase-match(at wave impedance
matching frequency) case and no gap exists around the zero
effective phase delay point. When the phase-match condition
is not satisfied, a gap opens at the zero effective phase delay
point, as shown by the dashed line in Fig. 1(a). The zero-feff
gap has a unique property that distinguishes itself from a
Bragg gap in that it is invariant with scaling, as shown by the
dotted line in Fig. 1(a). Figure 1(b) shows the other unique
feature of the zero-feff gap. The width of the zero-feff gap
enlarges when the ratio of the thicknesses of two media in-
creases from 2(solid line), to 3 (dashed line) and 4(dotted
line), respectively. But the middle of each gap hardly
changes. This is also quite different from a Bragg gap. Given

material parameters, the middle of a Bragg gap will shift
noticeably while the width of the gap will change a little
when the ratio of the thicknesses of the two types of layers
varies. These unusual features of the zero-feff gap can be
well understood by using an equivalent transmission-line
model, as demonstrated in Sec. III.

For a finite-periodic structure, the fields within each layer
are a superposition of forward-decaying and backward-
decaying evanescent waves. Suppose a transverse electric
wave is normally(along thez direction) incident on the
structure. The transmission properties and field distributions
of the structure can be obtained by means of a transfer matrix
method. Figure 2 shows another unique feature of the zero-
feff gap. The zero-feff gap is even robust against disorder.
The solid line in Fig. 2 is the transmittance through 16 peri-
ods, the ratio ofd1 andd2 is 2. The dotted line corresponds to
the transmittance through the same media but the lattice con-
stant is scaled by 2/3. The dashed line is the transmittance
through a structure with thickness fluctuation of ±4 mm over
32 layers on the condition that the ratio of averaged1 and

d2sd̄1/ d̄2d remains 2. The independence of the zero-feff gap
on scaling means that photonic devices based on such PBG
can be made very compact. It may be surprising that the
zero-feff gap is robust against disorder as long as the ratio of
average d1 andd2 maintains. These properties are connected
with the unusual field behavior inside MNG-ENG multilayer
structure. At each interface between MNG material and ENG
material, boundary condition requires that the tangential

FIG. 1. The variance of band gap with different ratio of two
media.(a) Solid line:d1=d2=12 mm; this corresponds to the phase
match(at wave impedance matching frequency) case. Dashed line:
d1=12 mm,d2=6 mm; a gap opens at the zero effective phase de-
lay point. Dotted line:d1 andd2 are scaled by 1/2 respectively; the
gap remains invariant.(b) The gap enlarges when the ratio of the
thicknesses of two media increases;d1=12 mm. Solid line:d1/d2

=2. Dashed line:d1/d2=3. Dotted line:d1/d2=4.
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component of electric and magnetic fields must be continu-
ous. Magnetic field is proportional to the permeability mul-
tiplying the derivative of electric field. Since the permeabil-
ity of MNG and ENG materials has opposite signs, the
derivative of electric field must change sign when the electric
field runs across the interface. As a result, the field is local-
ized at each interface. The field distributions corresponding
to the low (high) band edge frequencyvLsvHd of the zero-
feff gap(the solid line in Fig. 2) are shown in Figs. 3(a) and
3(b) respectively. The field behavior is quite different from
that of a Bragg gap. For the Bragg gap, the standing-wave
fields corresponding to the low(high) band edge frequency
are localized inside the high(low) refractive index media. So
the Bragg gap depends greatly on scaling. For the zero-feff
gap, the fields corresponding to the band edges are localized

at each interface of two media. It is the difference of field
behavior that may lead to the distinct properties of the Bragg
gap and the zero-feff gap.

III. EQUIVALENT TRANSMISSION-LINE MODEL
FOR THE MNG-ENG MULTILAYER

Sincem1 and«2 are dispersive, the mathematical expres-
sions of the band edge frequencies deriving from Eqs.(3) are
cumbersome. In order to capture the essential characteristic
of the zero-feff gap, we use a method based on equivalent
transmission-line(TL) models. Equivalent TL models have
been utilized to analyze the properties of MNG-ENG bilayer
structure[15]. In TL models, MNG material can be viewed
as distributed series(left-handed) and shunt(right-handed)
capacitance while ENG material can be viewed as distributed
series(right-handed) and shunt(left-handed) inductance.

We suppose thatC R
0 ,C L

0sLR
0 ,LL

0d are the per-unit-length
right-handed and left-handed capacitance(inductance). For a
MNG layer with d1 length, the equivalent lumped right-
handed(left-handed) capacitanceC R

msC L
md can be written as:

C R
m=C R

0d1,C L
m=C L

0 /d1; for a ENG layer withd2 length, the
equivalent lumped right-handed(left-handed) inductance
LR

esLL
ed can be written as:LR

e =LR
0d2,LL

e=LL
0 /d2. For MNG-

ENG periodic structure, the equivalent transmission lines can
be viewed as composite right/left-handed transmission lines.
For a unit cell of such transmission lines, one can obtain the
dispersion relation by using the transmission matrix and
Bloch-Floquet theorem[19]:

cossbdd = 1 −
1

2
F 1

v2LL
eC L

m + v2LR
eC R

m − SLR
e

LL
e +

C R
m

C L
mDG ,

s5d

where b is Bloch wave vector,d=d1+d2. From Eqs.(5),
supposing thatLL

eC R
m.LR

eC L
m, we obtain band edge frequen-

cies of a gap as

vL =
1

ÎLL
eC R

m
=Îd2

d1

1

ÎLL
0C R

0
,

vH =
1

ÎLR
eC L

m
=Îd1

d2

1

ÎLR
0C L

0
. s6d

The gap marked byvL andvH is equivalent to the zero-
feff gap. SinceLL

0, C R
0, LR

0, C L
0 are only connected with

material parameters, from Eqs.(6) we can see that the band
edges depend on the ratio ofd1 and d2. The band edges
therefore remain invariant whend1 andd2 are multiplied by
a scaling factor, respectively. Moreover, with the increase of
the ratio ofd1 andd2, vH increases whilevL decreases. So
the gap enlarges and its middle hardly shifts.

From Eqs.(5), we can also obtain the group velocity

vg =
dv

db
=

d sinsbdd
vLR

eC R
m − 1/sv3LL

eC L
md

. s7d

For v,vL, vLR
eC R

m−1/sv3LL
eC L

md,0, thenvg,0, this cor-
responds to the left-handed modes; forv.vH, vLR

eC R
m

FIG. 2. Solid line: Transmittance through 16 periods,d1

=12 mm,d2=6 mm. Dotted line: the lattice constant is scaled by
2/3. Dashed line: thickness fluctuation(random uniform deviate) of
±4 mm averaged over 32 layers(1 and2 are equally probable).

FIG. 3. The electric field distributions corresponding to the low
band edge frequencyvL (a) and high band edge frequencyvH (b) of
the solid line in Fig. 2.
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−1/sv3LL
eC L

md.0, thenvg.0, this corresponds to the right-
handed modes. Besides, we can derive the Eqs.(4) (phase-
match condition) through the equivalent TL model. When the
gap closes, we obtain

LL
eC R

m = LR
eC L

m ⇔
1

C L
0C R

0d1
2 =

1

LL
0LR

0d2
2. s8d

In equivalent TL models

C R
0 = A1«1,

1

C L
0 = v2uLequ = A2v2um1u,

LR
0 = A2m2,

1

LL
0 = v2uCequ = A1v2u«2u, s9d

whereA1 and A2 are two positive constant coefficients de-
pending on the geometry of the equivalent transmission line.
Substituting Eqs.(9) into Eqs. (8), we can obtain the Eqs.
(4). This confirms that the phase mismatch leads to the for-
mation of the zero-feff gap.

Here we discuss the connection between the zero-feff gap
and the zero-n̄ gap. The zero-n̄ gap and the zero-feff gap are
obtained from DPS-DNG and MNG-ENG multilayer struc-
ture, respectively. They have similarities in some ways and
differences in other ways. They both lie between left-handed
modes and right-handed modes, and are invariant with scal-
ing and insensitive to disorder. However, the zero-feff gap
originates from the interaction of evanescent waves, while
the zero-n̄ gap comes from the interaction of propagating
waves. Moreover, the zero-feff gap has one unique property
that the zero-n̄ gap does not possess. The width of the zero-
feff gap with almost fixed middle can be enlarged by varying
the ratio of the thicknesses of two media when material pa-
rameters are given. However, the zero-n̄ gap opens at a fre-
quency satisfying zero averaged refractive index condition.
Given material parameters, the middle of the zero-n̄ gap will
shift noticeably to meet the zero-n̄ condition when the ratio
of the thicknesses of two media varies. At the same time, the
width of the zero-n̄ gap changes a little. This is similar to that
of a Bragg gap. Therefore, the zero-n̄ gap is usually not wide
while the zero-feff gap can be made very wide by varying
the ratio of the thicknesses of two media.

IV. PHOTONIC QUANTUM-WELL STRUCTURE BASED
ON ZERO-feff GAPS

Conventional photonic quantum-well(QW) structures are
based on Bragg gaps[20]. Since photonic barriers based on
Bragg gaps depend on scaling and disorder, the quantized
confined photonic states in the well are strongly dependent
on scaling and randomness. Even small thickness fluctuation
in photonic barrier region will destroy the confined states,
which limits applications of photonic QW structures such as
multiple channeled filtering. However, if photonic barriers
are based on zero-feff gaps, the confined states in the well

will be insensitive to scaling and disorder, as shown in Fig.
4. Suppose that a structure is made ofAB andCD photonic
crystals. The thicknesses ofA, B, C andD are assumed to be
d1, d2, d3 and d4 respectively.CD photonic crystal can be
taken as a photonic well if the ratio ofd1 andd2 is chosen to
satisfy the phase-match(at wave impedance matching fre-
quency) condition. AndAB photonic crystal can be taken as
a photonic barrier for another arbitrary ratio ofd3 andd4 that
does not meet the phase-match condition. The solid line in
Fig. 4 is the transmittance throughsABd16 sCDd8 sBAd16 pho-
tonic QW structure. The dotted line corresponds to the trans-
mittance through the same media but the unit cell size is
scaled by 2/3. The dashed line is the transmittance through a
structure with thickness fluctuation of ±2 mm averaged over
sABd16 and sBAd16. The very weak dependence of the con-
fined states on scaling and disorder will make multiple chan-
neled filtering more practical.

V. CONCLUSION

In conclusion, we showed that one-dimensional PCs con-
taining single-negative materials can possess a type of PBG
with zero effective phase. The zero-feff gap is distinct from a
Bragg gap in that it is invariant with scaling and survives
under randomness. An equivalent transmission-line model is
used to explain the properties. Finally, the properties of the
zero-feff gap can be utilized to construct a photonic
quantum-well structure that is compact and robust against
disorder.
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FIG. 4. Solid line: Transmittance throughsABd16sCDd8sBAd16

photonic quantum-well structure;d1=12 mm, d2=6 mm, d3=d4

=14 mm. Dotted line: the lattice constant ofAB is scaled by 2/3.
Dashed line: thickness fluctuation of ±2 mm averaged oversABd16

and sBAd16.
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